Comparison of Metabolism of Vitamins D2 and D3 in Children With Nutritional Rickets
نویسندگان
چکیده
Children with calcium-deficiency rickets may have increased vitamin D requirements and respond differently to vitamin D(2) and vitamin D(3). Our objective was to compare the metabolism of vitamins D(2) and D(3) in rachitic and control children. We administered an oral single dose of vitamin D(2) or D(3) of 1.25 mg to 49 Nigerian children--28 with active rickets and 21 healthy controls. The primary outcome measure was the incremental change in vitamin D metabolites. Baseline serum 25-hydroxyvitamin D [25(OH)D] concentrations ranged from 7 to 24 and 15 to 34 ng/mL in rachitic and control children, respectively (p < .001), whereas baseline 1,25-dihydroxyvitamin D [1,25(OH)(2)D] values (mean ± SD) were 224 ± 72 and 121 ± 34 pg/mL, respectively (p < .001), and baseline 24,25-dihydroxyvitamin D [24,25(OH)(2)D] values were 1.13 ± 0.59 and 4.03 ± 1.33 ng/mL, respectively (p < .001). The peak increment in 25(OH)D was on day 3 and was similar with vitamins D(2) and D(3) in children with rickets (29 ± 17 and 25 ± 11 ng/mL, respectively) and in control children (33 ± 13 and 31 ± 16 ng/mL, respectively). 1,25(OH)(2)D rose significantly (p < .001) and similarly (p = .18) on day 3 by 166 ± 80 and 209 ± 83 pg/mL after vitamin D(2) and D(3) administration, respectively, in children with rickets. By contrast, control children had no significant increase in 1,25(OH)(2)D (19 ± 28 and 16 ± 38 pg/mL after vitamin D(2) and D(3) administration, respectively). We conclude that in the short term, vitamins D(2) and D(3) similarly increase serum 25(OH)D concentrations in rachitic and healthy children. A marked increase in 1,25(OH)(2)D in response to vitamin D distinguishes children with putative dietary calcium-deficiency rickets from healthy children, consistent with increased vitamin D requirements in children with calcium-deficiency rickets. © 2010 American Society for Bone and Mineral Research.
منابع مشابه
Vitamin D : Deficiency , Diversity and Dosage Andrew
Introduction Vitamin D was first isolated from tuna fish oil in 1936, and synthesized in 1952. It is a prohormone sterol which the body manufactures, given sunlight, from 7-dehydrocholesterol. Vitamin D3 (C27H44O, cholecalciferol) is the form we and other animals make, and what is found in fish liver oil. Oddly enough, fish cannot synthesize vitamin D. They get theirs low on the food chain from...
متن کاملOral Vitamin D3 for Treatment of Nutritional Rickets: A Randomized Controlled Trial
prevalence of hypovitaminosis D and nutritional rickets [1-3]. Treatment includes therapeutic doses of vitamin D and calcium. In USA, Australia, and UK, the recommended dose and duration of vitamin D therapy is variable with either a high dose bolus therapy (Stoss therapy 200,000-600,000 IU of vitamin D as a single oral or parenteral dose or intermittent high doses) or continuous slow supplemen...
متن کاملCarbon-13 nuclear magnetic resonance spectra of vitamins D and related compounds.
1. The natural abundance carbon-13 nmr of vitamins D (D2 and D3) and several isomers (5, 6-trans-vitamin D2, isotachysterol2 and isovitamin D2) have been completely assigned by employing off-resonance noise-decoupling, acetylation shifts, and lanthanide-induced shifts experiments. The last two techniques were especially useful for the present study. 2. Carbon-13 nmr spectral characteristics of...
متن کاملEvidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2.
In all species tested, except humans, biological differences between vitamins D2 and D3 are accepted as fact. To test the presumption of equivalence in humans, we compared the ability of equal molar quantities of vitamin D2 or D3 to increase serum 25-hydroxyvitamin D [25(OH)D], the measure of vitamin D nutrition. Subjects took 260 nmol (approximately 4000 IU) vitamin D2 (n=17) or vitamin D3 (n=...
متن کاملResurrection of vitamin D deficiency and rickets.
The epidemic scourge of rickets in the 19th century was caused by vitamin D deficiency due to inadequate sun exposure and resulted in growth retardation, muscle weakness, skeletal deformities, hypocalcemia, tetany, and seizures. The encouragement of sensible sun exposure and the fortification of milk with vitamin D resulted in almost complete eradication of the disease. Vitamin D (where D repre...
متن کامل